删除已集成的自适应调平宏

This commit is contained in:
魏瑞鹏 2025-05-19 14:49:47 +08:00
parent de2a9a36c1
commit 37cca8d5ba
5 changed files with 20 additions and 560 deletions

View File

@ -1060,15 +1060,11 @@ gcode:
{% endif %}
{% if adaptive_mesh|lower == 'true' %}
{% if printer.exclude_object.objects != [] %}
{% if idex_mode %}
BED_MESH_CLEAR
{% else %}
BED_MESH_CALIBRATE PROFILE=adaptive
{% endif %}
{% if idex_mode %}
BED_MESH_CLEAR
{% else %}
{% if idex_mode %}
BED_MESH_CLEAR
{% if printer.exclude_object.objects != [] %}
BED_MESH_CALIBRATE PROFILE=adaptive ADAPTIVE=1
{% else %}
{% if 'default' in profiles %}
BED_MESH_PROFILE LOAD=default
@ -1080,110 +1076,6 @@ gcode:
{% endif %}
{% endif %}
[gcode_macro BED_MESH_CALIBRATE]
rename_existing: _BED_MESH_CALIBRATE
gcode:
{% set all_points = printer.exclude_object.objects | map(attribute='polygon') | sum(start=[]) %} # Gather all object points
{% set bed_mesh_min = printer.configfile.settings.bed_mesh.mesh_min %} # Get bed mesh min from printer.cfg
{% set bed_mesh_max = printer.configfile.settings.bed_mesh.mesh_max %} # Get bed mesh max from printer.cfg
{% set probe_count = printer.configfile.settings.bed_mesh.probe_count %} # Get probe count from printer.cfg
{% set kamp_settings = printer["gcode_macro Adaptive_Mesh"] %} # Pull variables from _KAMP_Settings
{% set verbose_enable = kamp_settings.verbose_enable | abs %} # Pull verbose setting from _KAMP_Settings
{% set mesh_margin = kamp_settings.mesh_margin | float %} # Pull mesh margin setting from _KAMP_Settings
{% set fuzz_amount = kamp_settings.fuzz_amount | float %} # Pull fuzz amount setting from _KAMP_Settings
{% set default_profile = params.PROFILE | default("default") %} # get default mesh profile
{% set probe_count = probe_count if probe_count|length > 1 else probe_count * 2 %} # If probe count is only a single number, convert it to 2. E.g. probe_count:7 = 7,7
{% set max_probe_point_distance_x = ( bed_mesh_max[0] - bed_mesh_min[0] ) / (probe_count[0] - 1) %} # Determine max probe point distance
{% set max_probe_point_distance_y = ( bed_mesh_max[1] - bed_mesh_min[1] ) / (probe_count[1] - 1) %} # Determine max probe point distance
{% set x_min = all_points | map(attribute=0) | min | default(bed_mesh_min[0]) %} # Set x_min from smallest object x point
{% set y_min = all_points | map(attribute=1) | min | default(bed_mesh_min[1]) %} # Set y_min from smallest object y point
{% set x_max = all_points | map(attribute=0) | max | default(bed_mesh_max[0]) %} # Set x_max from largest object x point
{% set y_max = all_points | map(attribute=1) | max | default(bed_mesh_max[1]) %} # Set y_max from largest object y point
{% set fuzz_range = range((0) | int, (fuzz_amount * 100) | int + 1) %} # Set fuzz_range between 0 and fuzz_amount
{% set adapted_x_min = x_min - mesh_margin - (fuzz_range | random / 100.0) %} # Adapt x_min to margin and fuzz constraints
{% set adapted_y_min = y_min - mesh_margin - (fuzz_range | random / 100.0) %} # Adapt y_min to margin and fuzz constraints
{% set adapted_x_max = x_max + mesh_margin + (fuzz_range | random / 100.0) %} # Adapt x_max to margin and fuzz constraints
{% set adapted_y_max = y_max + mesh_margin + (fuzz_range | random / 100.0) %} # Adapt y_max to margin and fuzz constraints
{% set adapted_x_min = [adapted_x_min , bed_mesh_min[0]] | max %} # Compare adjustments to defaults and choose max
{% set adapted_y_min = [adapted_y_min , bed_mesh_min[1]] | max %} # Compare adjustments to defaults and choose max
{% set adapted_x_max = [adapted_x_max , bed_mesh_max[0]] | min %} # Compare adjustments to defaults and choose min
{% set adapted_y_max = [adapted_y_max , bed_mesh_max[1]] | min %} # Compare adjustments to defaults and choose min
{% set points_x = (((adapted_x_max - adapted_x_min) / max_probe_point_distance_x) | round(method='ceil') | int) + 1 %} # Define probe_count's x point count and round up
{% set points_y = (((adapted_y_max - adapted_y_min) / max_probe_point_distance_y) | round(method='ceil') | int) + 1 %} # Define probe_count's y point count and round up
{% if (([points_x, points_y]|max) > 6) %} #
{% set algorithm = "bicubic" %} #
{% set min_points = 4 %} #
{% else %} # Calculate if algorithm should be bicubic or lagrange
{% set algorithm = "lagrange" %} #
{% set min_points = 3 %} #
{% endif %} #
{% set points_x = [points_x , min_points]|max %} # Set probe_count's x points to fit the calculated algorithm
{% set points_y = [points_y , min_points]|max %} # Set probe_count's y points to fit the calculated algorithm
{% set points_x = [points_x , probe_count[0]]|min %}
{% set points_y = [points_y , probe_count[1]]|min %}
{% if verbose_enable == True %} # If verbose is enabled, print information about KAMP's calculations
{% if printer.exclude_object.objects != [] %}
{ action_respond_info( "Algorithm: {}.".format(
(algorithm),
)) }
{ action_respond_info("Default probe count: {},{}.".format(
(probe_count[0]),
(probe_count[1]),
)) }
{ action_respond_info("Adapted probe count: {},{}.".format(
(points_x),
(points_y),
)) }
{action_respond_info("Default mesh bounds: {}, {}.".format(
(bed_mesh_min[0],bed_mesh_min[1]),
(bed_mesh_max[0],bed_mesh_max[1]),
)) }
{% if mesh_margin > 0 %}
{action_respond_info("Mesh margin is {}, mesh bounds extended by {}mm.".format(
(mesh_margin),
(mesh_margin),
)) }
{% else %}
{action_respond_info("Mesh margin is 0, margin not increased.")}
{% endif %}
{% if fuzz_amount > 0 %}
{action_respond_info("Mesh point fuzzing enabled, points fuzzed up to {}mm.".format(
(fuzz_amount),
)) }
{% else %}
{action_respond_info("Fuzz amount is 0, mesh points not fuzzed.")}
{% endif %}
{ action_respond_info("Adapted mesh bounds: {}, {}.".format(
(adapted_x_min, adapted_y_min),
(adapted_x_max, adapted_y_max),
)) }
{action_respond_info("KAMP adjustments successful. Happy KAMPing!")}
{% else %}
{action_respond_info("No objects detected! Check your gcode and make sure that EXCLUDE_OBJECT_DEFINE is happening before BED_MESH_CALIBRATE is called. Defaulting to regular meshing.")}
G4 P5000 # Wait 5 seconds to make error more visible
{% endif %}
{% endif %}
_BED_MESH_CALIBRATE PROFILE={default_profile} mesh_min={adapted_x_min},{adapted_y_min} mesh_max={adapted_x_max},{adapted_y_max} ALGORITHM={algorithm} PROBE_COUNT={points_x},{points_y} # End of verbose
BED_MESH_PROFILE LOAD={default_profile}
########################################
# Nozzle Calibrate
########################################

View File

@ -973,15 +973,11 @@ gcode:
{% endif %}
{% if adaptive_mesh|lower == 'true' %}
{% if printer.exclude_object.objects != [] %}
{% if idex_mode %}
BED_MESH_CLEAR
{% else %}
BED_MESH_CALIBRATE PROFILE=adaptive
{% endif %}
{% if idex_mode %}
BED_MESH_CLEAR
{% else %}
{% if idex_mode %}
BED_MESH_CLEAR
{% if printer.exclude_object.objects != [] %}
BED_MESH_CALIBRATE PROFILE=adaptive ADAPTIVE=1
{% else %}
{% if 'default' in profiles %}
BED_MESH_PROFILE LOAD=default
@ -993,110 +989,6 @@ gcode:
{% endif %}
{% endif %}
[gcode_macro BED_MESH_CALIBRATE]
rename_existing: _BED_MESH_CALIBRATE
gcode:
{% set all_points = printer.exclude_object.objects | map(attribute='polygon') | sum(start=[]) %} # Gather all object points
{% set bed_mesh_min = printer.configfile.settings.bed_mesh.mesh_min %} # Get bed mesh min from printer.cfg
{% set bed_mesh_max = printer.configfile.settings.bed_mesh.mesh_max %} # Get bed mesh max from printer.cfg
{% set probe_count = printer.configfile.settings.bed_mesh.probe_count %} # Get probe count from printer.cfg
{% set kamp_settings = printer["gcode_macro Adaptive_Mesh"] %} # Pull variables from _KAMP_Settings
{% set verbose_enable = kamp_settings.verbose_enable | abs %} # Pull verbose setting from _KAMP_Settings
{% set mesh_margin = kamp_settings.mesh_margin | float %} # Pull mesh margin setting from _KAMP_Settings
{% set fuzz_amount = kamp_settings.fuzz_amount | float %} # Pull fuzz amount setting from _KAMP_Settings
{% set default_profile = params.PROFILE | default("default") %} # get default mesh profile
{% set probe_count = probe_count if probe_count|length > 1 else probe_count * 2 %} # If probe count is only a single number, convert it to 2. E.g. probe_count:7 = 7,7
{% set max_probe_point_distance_x = ( bed_mesh_max[0] - bed_mesh_min[0] ) / (probe_count[0] - 1) %} # Determine max probe point distance
{% set max_probe_point_distance_y = ( bed_mesh_max[1] - bed_mesh_min[1] ) / (probe_count[1] - 1) %} # Determine max probe point distance
{% set x_min = all_points | map(attribute=0) | min | default(bed_mesh_min[0]) %} # Set x_min from smallest object x point
{% set y_min = all_points | map(attribute=1) | min | default(bed_mesh_min[1]) %} # Set y_min from smallest object y point
{% set x_max = all_points | map(attribute=0) | max | default(bed_mesh_max[0]) %} # Set x_max from largest object x point
{% set y_max = all_points | map(attribute=1) | max | default(bed_mesh_max[1]) %} # Set y_max from largest object y point
{% set fuzz_range = range((0) | int, (fuzz_amount * 100) | int + 1) %} # Set fuzz_range between 0 and fuzz_amount
{% set adapted_x_min = x_min - mesh_margin - (fuzz_range | random / 100.0) %} # Adapt x_min to margin and fuzz constraints
{% set adapted_y_min = y_min - mesh_margin - (fuzz_range | random / 100.0) %} # Adapt y_min to margin and fuzz constraints
{% set adapted_x_max = x_max + mesh_margin + (fuzz_range | random / 100.0) %} # Adapt x_max to margin and fuzz constraints
{% set adapted_y_max = y_max + mesh_margin + (fuzz_range | random / 100.0) %} # Adapt y_max to margin and fuzz constraints
{% set adapted_x_min = [adapted_x_min , bed_mesh_min[0]] | max %} # Compare adjustments to defaults and choose max
{% set adapted_y_min = [adapted_y_min , bed_mesh_min[1]] | max %} # Compare adjustments to defaults and choose max
{% set adapted_x_max = [adapted_x_max , bed_mesh_max[0]] | min %} # Compare adjustments to defaults and choose min
{% set adapted_y_max = [adapted_y_max , bed_mesh_max[1]] | min %} # Compare adjustments to defaults and choose min
{% set points_x = (((adapted_x_max - adapted_x_min) / max_probe_point_distance_x) | round(method='ceil') | int) + 1 %} # Define probe_count's x point count and round up
{% set points_y = (((adapted_y_max - adapted_y_min) / max_probe_point_distance_y) | round(method='ceil') | int) + 1 %} # Define probe_count's y point count and round up
{% if (([points_x, points_y]|max) > 6) %} #
{% set algorithm = "bicubic" %} #
{% set min_points = 4 %} #
{% else %} # Calculate if algorithm should be bicubic or lagrange
{% set algorithm = "lagrange" %} #
{% set min_points = 3 %} #
{% endif %} #
{% set points_x = [points_x , min_points]|max %} # Set probe_count's x points to fit the calculated algorithm
{% set points_y = [points_y , min_points]|max %} # Set probe_count's y points to fit the calculated algorithm
{% set points_x = [points_x , probe_count[0]]|min %}
{% set points_y = [points_y , probe_count[1]]|min %}
{% if verbose_enable == True %} # If verbose is enabled, print information about KAMP's calculations
{% if printer.exclude_object.objects != [] %}
{ action_respond_info( "Algorithm: {}.".format(
(algorithm),
)) }
{ action_respond_info("Default probe count: {},{}.".format(
(probe_count[0]),
(probe_count[1]),
)) }
{ action_respond_info("Adapted probe count: {},{}.".format(
(points_x),
(points_y),
)) }
{action_respond_info("Default mesh bounds: {}, {}.".format(
(bed_mesh_min[0],bed_mesh_min[1]),
(bed_mesh_max[0],bed_mesh_max[1]),
)) }
{% if mesh_margin > 0 %}
{action_respond_info("Mesh margin is {}, mesh bounds extended by {}mm.".format(
(mesh_margin),
(mesh_margin),
)) }
{% else %}
{action_respond_info("Mesh margin is 0, margin not increased.")}
{% endif %}
{% if fuzz_amount > 0 %}
{action_respond_info("Mesh point fuzzing enabled, points fuzzed up to {}mm.".format(
(fuzz_amount),
)) }
{% else %}
{action_respond_info("Fuzz amount is 0, mesh points not fuzzed.")}
{% endif %}
{ action_respond_info("Adapted mesh bounds: {}, {}.".format(
(adapted_x_min, adapted_y_min),
(adapted_x_max, adapted_y_max),
)) }
{action_respond_info("KAMP adjustments successful. Happy KAMPing!")}
{% else %}
{action_respond_info("No objects detected! Check your gcode and make sure that EXCLUDE_OBJECT_DEFINE is happening before BED_MESH_CALIBRATE is called. Defaulting to regular meshing.")}
G4 P5000 # Wait 5 seconds to make error more visible
{% endif %}
{% endif %}
_BED_MESH_CALIBRATE PROFILE={default_profile} mesh_min={adapted_x_min},{adapted_y_min} mesh_max={adapted_x_max},{adapted_y_max} ALGORITHM={algorithm} PROBE_COUNT={points_x},{points_y} # End of verbose
BED_MESH_PROFILE LOAD={default_profile}
########################################
# Nozzle Calibrate
########################################

View File

@ -1061,15 +1061,11 @@ gcode:
{% endif %}
{% if adaptive_mesh|lower == 'true' %}
{% if printer.exclude_object.objects != [] %}
{% if idex_mode %}
BED_MESH_CLEAR
{% else %}
BED_MESH_CALIBRATE PROFILE=adaptive
{% endif %}
{% if idex_mode %}
BED_MESH_CLEAR
{% else %}
{% if idex_mode %}
BED_MESH_CLEAR
{% if printer.exclude_object.objects != [] %}
BED_MESH_CALIBRATE PROFILE=adaptive ADAPTIVE=1
{% else %}
{% if 'default' in profiles %}
BED_MESH_PROFILE LOAD=default
@ -1081,110 +1077,6 @@ gcode:
{% endif %}
{% endif %}
[gcode_macro BED_MESH_CALIBRATE]
rename_existing: _BED_MESH_CALIBRATE
gcode:
{% set all_points = printer.exclude_object.objects | map(attribute='polygon') | sum(start=[]) %} # Gather all object points
{% set bed_mesh_min = printer.configfile.settings.bed_mesh.mesh_min %} # Get bed mesh min from printer.cfg
{% set bed_mesh_max = printer.configfile.settings.bed_mesh.mesh_max %} # Get bed mesh max from printer.cfg
{% set probe_count = printer.configfile.settings.bed_mesh.probe_count %} # Get probe count from printer.cfg
{% set kamp_settings = printer["gcode_macro Adaptive_Mesh"] %} # Pull variables from _KAMP_Settings
{% set verbose_enable = kamp_settings.verbose_enable | abs %} # Pull verbose setting from _KAMP_Settings
{% set mesh_margin = kamp_settings.mesh_margin | float %} # Pull mesh margin setting from _KAMP_Settings
{% set fuzz_amount = kamp_settings.fuzz_amount | float %} # Pull fuzz amount setting from _KAMP_Settings
{% set default_profile = params.PROFILE | default("default") %} # get default mesh profile
{% set probe_count = probe_count if probe_count|length > 1 else probe_count * 2 %} # If probe count is only a single number, convert it to 2. E.g. probe_count:7 = 7,7
{% set max_probe_point_distance_x = ( bed_mesh_max[0] - bed_mesh_min[0] ) / (probe_count[0] - 1) %} # Determine max probe point distance
{% set max_probe_point_distance_y = ( bed_mesh_max[1] - bed_mesh_min[1] ) / (probe_count[1] - 1) %} # Determine max probe point distance
{% set x_min = all_points | map(attribute=0) | min | default(bed_mesh_min[0]) %} # Set x_min from smallest object x point
{% set y_min = all_points | map(attribute=1) | min | default(bed_mesh_min[1]) %} # Set y_min from smallest object y point
{% set x_max = all_points | map(attribute=0) | max | default(bed_mesh_max[0]) %} # Set x_max from largest object x point
{% set y_max = all_points | map(attribute=1) | max | default(bed_mesh_max[1]) %} # Set y_max from largest object y point
{% set fuzz_range = range((0) | int, (fuzz_amount * 100) | int + 1) %} # Set fuzz_range between 0 and fuzz_amount
{% set adapted_x_min = x_min - mesh_margin - (fuzz_range | random / 100.0) %} # Adapt x_min to margin and fuzz constraints
{% set adapted_y_min = y_min - mesh_margin - (fuzz_range | random / 100.0) %} # Adapt y_min to margin and fuzz constraints
{% set adapted_x_max = x_max + mesh_margin + (fuzz_range | random / 100.0) %} # Adapt x_max to margin and fuzz constraints
{% set adapted_y_max = y_max + mesh_margin + (fuzz_range | random / 100.0) %} # Adapt y_max to margin and fuzz constraints
{% set adapted_x_min = [adapted_x_min , bed_mesh_min[0]] | max %} # Compare adjustments to defaults and choose max
{% set adapted_y_min = [adapted_y_min , bed_mesh_min[1]] | max %} # Compare adjustments to defaults and choose max
{% set adapted_x_max = [adapted_x_max , bed_mesh_max[0]] | min %} # Compare adjustments to defaults and choose min
{% set adapted_y_max = [adapted_y_max , bed_mesh_max[1]] | min %} # Compare adjustments to defaults and choose min
{% set points_x = (((adapted_x_max - adapted_x_min) / max_probe_point_distance_x) | round(method='ceil') | int) + 1 %} # Define probe_count's x point count and round up
{% set points_y = (((adapted_y_max - adapted_y_min) / max_probe_point_distance_y) | round(method='ceil') | int) + 1 %} # Define probe_count's y point count and round up
{% if (([points_x, points_y]|max) > 6) %} #
{% set algorithm = "bicubic" %} #
{% set min_points = 4 %} #
{% else %} # Calculate if algorithm should be bicubic or lagrange
{% set algorithm = "lagrange" %} #
{% set min_points = 3 %} #
{% endif %} #
{% set points_x = [points_x , min_points]|max %} # Set probe_count's x points to fit the calculated algorithm
{% set points_y = [points_y , min_points]|max %} # Set probe_count's y points to fit the calculated algorithm
{% set points_x = [points_x , probe_count[0]]|min %}
{% set points_y = [points_y , probe_count[1]]|min %}
{% if verbose_enable == True %} # If verbose is enabled, print information about KAMP's calculations
{% if printer.exclude_object.objects != [] %}
{ action_respond_info( "Algorithm: {}.".format(
(algorithm),
)) }
{ action_respond_info("Default probe count: {},{}.".format(
(probe_count[0]),
(probe_count[1]),
)) }
{ action_respond_info("Adapted probe count: {},{}.".format(
(points_x),
(points_y),
)) }
{action_respond_info("Default mesh bounds: {}, {}.".format(
(bed_mesh_min[0],bed_mesh_min[1]),
(bed_mesh_max[0],bed_mesh_max[1]),
)) }
{% if mesh_margin > 0 %}
{action_respond_info("Mesh margin is {}, mesh bounds extended by {}mm.".format(
(mesh_margin),
(mesh_margin),
)) }
{% else %}
{action_respond_info("Mesh margin is 0, margin not increased.")}
{% endif %}
{% if fuzz_amount > 0 %}
{action_respond_info("Mesh point fuzzing enabled, points fuzzed up to {}mm.".format(
(fuzz_amount),
)) }
{% else %}
{action_respond_info("Fuzz amount is 0, mesh points not fuzzed.")}
{% endif %}
{ action_respond_info("Adapted mesh bounds: {}, {}.".format(
(adapted_x_min, adapted_y_min),
(adapted_x_max, adapted_y_max),
)) }
{action_respond_info("KAMP adjustments successful. Happy KAMPing!")}
{% else %}
{action_respond_info("No objects detected! Check your gcode and make sure that EXCLUDE_OBJECT_DEFINE is happening before BED_MESH_CALIBRATE is called. Defaulting to regular meshing.")}
G4 P5000 # Wait 5 seconds to make error more visible
{% endif %}
{% endif %}
_BED_MESH_CALIBRATE PROFILE={default_profile} mesh_min={adapted_x_min},{adapted_y_min} mesh_max={adapted_x_max},{adapted_y_max} ALGORITHM={algorithm} PROBE_COUNT={points_x},{points_y} # End of verbose
BED_MESH_PROFILE LOAD={default_profile}
########################################
# Nozzle Calibrate
########################################

View File

@ -968,15 +968,11 @@ gcode:
{% endif %}
{% if adaptive_mesh|lower == 'true' %}
{% if printer.exclude_object.objects != [] %}
{% if idex_mode %}
BED_MESH_CLEAR
{% else %}
BED_MESH_CALIBRATE PROFILE=adaptive
{% endif %}
{% if idex_mode %}
BED_MESH_CLEAR
{% else %}
{% if idex_mode %}
BED_MESH_CLEAR
{% if printer.exclude_object.objects != [] %}
BED_MESH_CALIBRATE PROFILE=adaptive ADAPTIVE=1
{% else %}
{% if 'default' in profiles %}
BED_MESH_PROFILE LOAD=default
@ -988,110 +984,6 @@ gcode:
{% endif %}
{% endif %}
[gcode_macro BED_MESH_CALIBRATE]
rename_existing: _BED_MESH_CALIBRATE
gcode:
{% set all_points = printer.exclude_object.objects | map(attribute='polygon') | sum(start=[]) %} # Gather all object points
{% set bed_mesh_min = printer.configfile.settings.bed_mesh.mesh_min %} # Get bed mesh min from printer.cfg
{% set bed_mesh_max = printer.configfile.settings.bed_mesh.mesh_max %} # Get bed mesh max from printer.cfg
{% set probe_count = printer.configfile.settings.bed_mesh.probe_count %} # Get probe count from printer.cfg
{% set kamp_settings = printer["gcode_macro Adaptive_Mesh"] %} # Pull variables from _KAMP_Settings
{% set verbose_enable = kamp_settings.verbose_enable | abs %} # Pull verbose setting from _KAMP_Settings
{% set mesh_margin = kamp_settings.mesh_margin | float %} # Pull mesh margin setting from _KAMP_Settings
{% set fuzz_amount = kamp_settings.fuzz_amount | float %} # Pull fuzz amount setting from _KAMP_Settings
{% set default_profile = params.PROFILE | default("default") %} # get default mesh profile
{% set probe_count = probe_count if probe_count|length > 1 else probe_count * 2 %} # If probe count is only a single number, convert it to 2. E.g. probe_count:7 = 7,7
{% set max_probe_point_distance_x = ( bed_mesh_max[0] - bed_mesh_min[0] ) / (probe_count[0] - 1) %} # Determine max probe point distance
{% set max_probe_point_distance_y = ( bed_mesh_max[1] - bed_mesh_min[1] ) / (probe_count[1] - 1) %} # Determine max probe point distance
{% set x_min = all_points | map(attribute=0) | min | default(bed_mesh_min[0]) %} # Set x_min from smallest object x point
{% set y_min = all_points | map(attribute=1) | min | default(bed_mesh_min[1]) %} # Set y_min from smallest object y point
{% set x_max = all_points | map(attribute=0) | max | default(bed_mesh_max[0]) %} # Set x_max from largest object x point
{% set y_max = all_points | map(attribute=1) | max | default(bed_mesh_max[1]) %} # Set y_max from largest object y point
{% set fuzz_range = range((0) | int, (fuzz_amount * 100) | int + 1) %} # Set fuzz_range between 0 and fuzz_amount
{% set adapted_x_min = x_min - mesh_margin - (fuzz_range | random / 100.0) %} # Adapt x_min to margin and fuzz constraints
{% set adapted_y_min = y_min - mesh_margin - (fuzz_range | random / 100.0) %} # Adapt y_min to margin and fuzz constraints
{% set adapted_x_max = x_max + mesh_margin + (fuzz_range | random / 100.0) %} # Adapt x_max to margin and fuzz constraints
{% set adapted_y_max = y_max + mesh_margin + (fuzz_range | random / 100.0) %} # Adapt y_max to margin and fuzz constraints
{% set adapted_x_min = [adapted_x_min , bed_mesh_min[0]] | max %} # Compare adjustments to defaults and choose max
{% set adapted_y_min = [adapted_y_min , bed_mesh_min[1]] | max %} # Compare adjustments to defaults and choose max
{% set adapted_x_max = [adapted_x_max , bed_mesh_max[0]] | min %} # Compare adjustments to defaults and choose min
{% set adapted_y_max = [adapted_y_max , bed_mesh_max[1]] | min %} # Compare adjustments to defaults and choose min
{% set points_x = (((adapted_x_max - adapted_x_min) / max_probe_point_distance_x) | round(method='ceil') | int) + 1 %} # Define probe_count's x point count and round up
{% set points_y = (((adapted_y_max - adapted_y_min) / max_probe_point_distance_y) | round(method='ceil') | int) + 1 %} # Define probe_count's y point count and round up
{% if (([points_x, points_y]|max) > 6) %} #
{% set algorithm = "bicubic" %} #
{% set min_points = 4 %} #
{% else %} # Calculate if algorithm should be bicubic or lagrange
{% set algorithm = "lagrange" %} #
{% set min_points = 3 %} #
{% endif %} #
{% set points_x = [points_x , min_points]|max %} # Set probe_count's x points to fit the calculated algorithm
{% set points_y = [points_y , min_points]|max %} # Set probe_count's y points to fit the calculated algorithm
{% set points_x = [points_x , probe_count[0]]|min %}
{% set points_y = [points_y , probe_count[1]]|min %}
{% if verbose_enable == True %} # If verbose is enabled, print information about KAMP's calculations
{% if printer.exclude_object.objects != [] %}
{ action_respond_info( "Algorithm: {}.".format(
(algorithm),
)) }
{ action_respond_info("Default probe count: {},{}.".format(
(probe_count[0]),
(probe_count[1]),
)) }
{ action_respond_info("Adapted probe count: {},{}.".format(
(points_x),
(points_y),
)) }
{action_respond_info("Default mesh bounds: {}, {}.".format(
(bed_mesh_min[0],bed_mesh_min[1]),
(bed_mesh_max[0],bed_mesh_max[1]),
)) }
{% if mesh_margin > 0 %}
{action_respond_info("Mesh margin is {}, mesh bounds extended by {}mm.".format(
(mesh_margin),
(mesh_margin),
)) }
{% else %}
{action_respond_info("Mesh margin is 0, margin not increased.")}
{% endif %}
{% if fuzz_amount > 0 %}
{action_respond_info("Mesh point fuzzing enabled, points fuzzed up to {}mm.".format(
(fuzz_amount),
)) }
{% else %}
{action_respond_info("Fuzz amount is 0, mesh points not fuzzed.")}
{% endif %}
{ action_respond_info("Adapted mesh bounds: {}, {}.".format(
(adapted_x_min, adapted_y_min),
(adapted_x_max, adapted_y_max),
)) }
{action_respond_info("KAMP adjustments successful. Happy KAMPing!")}
{% else %}
{action_respond_info("No objects detected! Check your gcode and make sure that EXCLUDE_OBJECT_DEFINE is happening before BED_MESH_CALIBRATE is called. Defaulting to regular meshing.")}
G4 P5000 # Wait 5 seconds to make error more visible
{% endif %}
{% endif %}
_BED_MESH_CALIBRATE PROFILE={default_profile} mesh_min={adapted_x_min},{adapted_y_min} mesh_max={adapted_x_max},{adapted_y_max} ALGORITHM={algorithm} PROBE_COUNT={points_x},{points_y} # End of verbose
BED_MESH_PROFILE LOAD={default_profile}
########################################
# Nozzle Calibrate
########################################

View File

@ -1233,15 +1233,11 @@ gcode:
{% endif %}
{% if adaptive_mesh|lower == 'true' %}
{% if printer.exclude_object.objects != [] %}
{% if idex_mode %}
BED_MESH_CLEAR
{% else %}
BED_MESH_CALIBRATE PROFILE=adaptive
{% endif %}
{% if idex_mode %}
BED_MESH_CLEAR
{% else %}
{% if idex_mode %}
BED_MESH_CLEAR
{% if printer.exclude_object.objects != [] %}
BED_MESH_CALIBRATE PROFILE=adaptive ADAPTIVE=1
{% else %}
{% if 'default' in profiles %}
BED_MESH_PROFILE LOAD=default
@ -1253,110 +1249,6 @@ gcode:
{% endif %}
{% endif %}
[gcode_macro BED_MESH_CALIBRATE]
rename_existing: _BED_MESH_CALIBRATE
gcode:
{% set all_points = printer.exclude_object.objects | map(attribute='polygon') | sum(start=[]) %} # Gather all object points
{% set bed_mesh_min = printer.configfile.settings.bed_mesh.mesh_min %} # Get bed mesh min from printer.cfg
{% set bed_mesh_max = printer.configfile.settings.bed_mesh.mesh_max %} # Get bed mesh max from printer.cfg
{% set probe_count = printer.configfile.settings.bed_mesh.probe_count %} # Get probe count from printer.cfg
{% set kamp_settings = printer["gcode_macro Adaptive_Mesh"] %} # Pull variables from _KAMP_Settings
{% set verbose_enable = kamp_settings.verbose_enable | abs %} # Pull verbose setting from _KAMP_Settings
{% set mesh_margin = kamp_settings.mesh_margin | float %} # Pull mesh margin setting from _KAMP_Settings
{% set fuzz_amount = kamp_settings.fuzz_amount | float %} # Pull fuzz amount setting from _KAMP_Settings
{% set default_profile = params.PROFILE | default("default") %} # get default mesh profile
{% set probe_count = probe_count if probe_count|length > 1 else probe_count * 2 %} # If probe count is only a single number, convert it to 2. E.g. probe_count:7 = 7,7
{% set max_probe_point_distance_x = ( bed_mesh_max[0] - bed_mesh_min[0] ) / (probe_count[0] - 1) %} # Determine max probe point distance
{% set max_probe_point_distance_y = ( bed_mesh_max[1] - bed_mesh_min[1] ) / (probe_count[1] - 1) %} # Determine max probe point distance
{% set x_min = all_points | map(attribute=0) | min | default(bed_mesh_min[0]) %} # Set x_min from smallest object x point
{% set y_min = all_points | map(attribute=1) | min | default(bed_mesh_min[1]) %} # Set y_min from smallest object y point
{% set x_max = all_points | map(attribute=0) | max | default(bed_mesh_max[0]) %} # Set x_max from largest object x point
{% set y_max = all_points | map(attribute=1) | max | default(bed_mesh_max[1]) %} # Set y_max from largest object y point
{% set fuzz_range = range((0) | int, (fuzz_amount * 100) | int + 1) %} # Set fuzz_range between 0 and fuzz_amount
{% set adapted_x_min = x_min - mesh_margin - (fuzz_range | random / 100.0) %} # Adapt x_min to margin and fuzz constraints
{% set adapted_y_min = y_min - mesh_margin - (fuzz_range | random / 100.0) %} # Adapt y_min to margin and fuzz constraints
{% set adapted_x_max = x_max + mesh_margin + (fuzz_range | random / 100.0) %} # Adapt x_max to margin and fuzz constraints
{% set adapted_y_max = y_max + mesh_margin + (fuzz_range | random / 100.0) %} # Adapt y_max to margin and fuzz constraints
{% set adapted_x_min = [adapted_x_min , bed_mesh_min[0]] | max %} # Compare adjustments to defaults and choose max
{% set adapted_y_min = [adapted_y_min , bed_mesh_min[1]] | max %} # Compare adjustments to defaults and choose max
{% set adapted_x_max = [adapted_x_max , bed_mesh_max[0]] | min %} # Compare adjustments to defaults and choose min
{% set adapted_y_max = [adapted_y_max , bed_mesh_max[1]] | min %} # Compare adjustments to defaults and choose min
{% set points_x = (((adapted_x_max - adapted_x_min) / max_probe_point_distance_x) | round(method='ceil') | int) + 1 %} # Define probe_count's x point count and round up
{% set points_y = (((adapted_y_max - adapted_y_min) / max_probe_point_distance_y) | round(method='ceil') | int) + 1 %} # Define probe_count's y point count and round up
{% if (([points_x, points_y]|max) > 6) %} #
{% set algorithm = "bicubic" %} #
{% set min_points = 4 %} #
{% else %} # Calculate if algorithm should be bicubic or lagrange
{% set algorithm = "lagrange" %} #
{% set min_points = 3 %} #
{% endif %} #
{% set points_x = [points_x , min_points]|max %} # Set probe_count's x points to fit the calculated algorithm
{% set points_y = [points_y , min_points]|max %} # Set probe_count's y points to fit the calculated algorithm
{% set points_x = [points_x , probe_count[0]]|min %}
{% set points_y = [points_y , probe_count[1]]|min %}
{% if verbose_enable == True %} # If verbose is enabled, print information about KAMP's calculations
{% if printer.exclude_object.objects != [] %}
{ action_respond_info( "Algorithm: {}.".format(
(algorithm),
)) }
{ action_respond_info("Default probe count: {},{}.".format(
(probe_count[0]),
(probe_count[1]),
)) }
{ action_respond_info("Adapted probe count: {},{}.".format(
(points_x),
(points_y),
)) }
{action_respond_info("Default mesh bounds: {}, {}.".format(
(bed_mesh_min[0],bed_mesh_min[1]),
(bed_mesh_max[0],bed_mesh_max[1]),
)) }
{% if mesh_margin > 0 %}
{action_respond_info("Mesh margin is {}, mesh bounds extended by {}mm.".format(
(mesh_margin),
(mesh_margin),
)) }
{% else %}
{action_respond_info("Mesh margin is 0, margin not increased.")}
{% endif %}
{% if fuzz_amount > 0 %}
{action_respond_info("Mesh point fuzzing enabled, points fuzzed up to {}mm.".format(
(fuzz_amount),
)) }
{% else %}
{action_respond_info("Fuzz amount is 0, mesh points not fuzzed.")}
{% endif %}
{ action_respond_info("Adapted mesh bounds: {}, {}.".format(
(adapted_x_min, adapted_y_min),
(adapted_x_max, adapted_y_max),
)) }
{action_respond_info("KAMP adjustments successful. Happy KAMPing!")}
{% else %}
{action_respond_info("No objects detected! Check your gcode and make sure that EXCLUDE_OBJECT_DEFINE is happening before BED_MESH_CALIBRATE is called. Defaulting to regular meshing.")}
G4 P5000 # Wait 5 seconds to make error more visible
{% endif %}
{% endif %}
_BED_MESH_CALIBRATE PROFILE={default_profile} mesh_min={adapted_x_min},{adapted_y_min} mesh_max={adapted_x_max},{adapted_y_max} ALGORITHM={algorithm} PROBE_COUNT={points_x},{points_y} # End of verbose
BED_MESH_PROFILE LOAD={default_profile}
########################################
# Nozzle Calibrate
########################################