diff --git a/klippy/clocksync.py b/klippy/clocksync.py
index a2c217a08..404c5e6ae 100644
--- a/klippy/clocksync.py
+++ b/klippy/clocksync.py
@@ -5,121 +5,120 @@
 # This file may be distributed under the terms of the GNU GPLv3 license.
 import logging, threading
 
-MAX_CLOCK_DRIFT = 0.000100
+COMM_TIMEOUT = 3.5
+RTT_AGE = .000010 / (60. * 60.)
 
 class ClockSync:
     def __init__(self, reactor):
         self.reactor = reactor
         self.serial = None
-        self.queries_pending = 0
         self.status_timer = self.reactor.register_timer(self._status_event)
         self.status_cmd = None
         self.mcu_freq = 0.
-        self.lock = threading.Lock()
         self.last_clock = 0
-        self.last_clock_time = self.last_clock_time_min = 0.
-        self.min_freq = self.max_freq = 0.
+        self.min_half_rtt = 999999999.9
+        self.min_half_rtt_time = 0.
+        self.clock_est = self.prev_est = (0., 0, 0.)
+        self.last_clock_fast = False
     def connect(self, serial):
         self.serial = serial
-        # Load initial last_clock/last_clock_time
         msgparser = serial.msgparser
+        self.mcu_freq = msgparser.get_constant_float('CLOCK_FREQ')
+        # Load initial clock and frequency
         uptime_msg = msgparser.create_command('get_uptime')
         params = serial.send_with_response(uptime_msg, 'uptime')
-        self.last_clock = (params['high'] << 32) | params['clock']
-        self.last_clock_time = params['#receive_time']
-        self.last_clock_time_min = params['#sent_time']
-        self.mcu_freq = msgparser.get_constant_float('CLOCK_FREQ')
-        self.min_freq = self.mcu_freq * (1. - MAX_CLOCK_DRIFT)
-        self.max_freq = self.mcu_freq * (1. + MAX_CLOCK_DRIFT)
+        self.last_clock = clock = (params['high'] << 32) | params['clock']
+        new_time = .5 * (params['#sent_time'] + params['#receive_time'])
+        self.clock_est = self.prev_est = (new_time, clock, self.mcu_freq)
         # Enable periodic get_status timer
-        serial.register_callback(self._handle_status, 'status')
         self.status_cmd = msgparser.create_command('get_status')
+        for i in range(8):
+            params = serial.send_with_response(self.status_cmd, 'status')
+            self._handle_status(params)
+            self.reactor.pause(0.100)
+        serial.register_callback(self._handle_status, 'status')
         self.reactor.update_timer(self.status_timer, self.reactor.NOW)
     def connect_file(self, serial, pace=False):
         self.serial = serial
         self.mcu_freq = serial.msgparser.get_constant_float('CLOCK_FREQ')
-        est_freq = 1000000000000.
+        freq = 1000000000000.
         if pace:
-            est_freq = self.mcu_freq
-        self.min_freq = self.max_freq = est_freq
-        self.last_clock = 0
-        self.last_clock_time = self.reactor.monotonic()
-        serial.set_clock_est(
-            self.min_freq, self.last_clock_time, self.last_clock)
-    def stats(self, eventtime):
-        return "last_clock=%d last_clock_time=%.3f" % (
-            self.last_clock, self.last_clock_time)
-    def is_active(self, eventtime):
-        return self.queries_pending <= 4
-    def calibrate_clock(self, print_time, eventtime):
-        return (0., self.mcu_freq)
-    def get_clock(self, eventtime):
-        with self.lock:
-            last_clock = self.last_clock
-            last_clock_time = self.last_clock_time
-            min_freq = self.min_freq
-        return int(last_clock + (eventtime - last_clock_time) * min_freq)
-    def clock32_to_clock64(self, clock32):
-        with self.lock:
-            last_clock = self.last_clock
-        clock_diff = (last_clock - clock32) & 0xffffffff
-        if clock_diff & 0x80000000:
-            return last_clock + 0x100000000 - clock_diff
-        return last_clock - clock_diff
-    def print_time_to_clock(self, print_time):
-        return int(print_time * self.mcu_freq)
-    def clock_to_print_time(self, clock):
-        return clock / self.mcu_freq
-    def estimated_print_time(self, eventtime):
-        return self.clock_to_print_time(self.get_clock(eventtime))
-    def get_adjusted_freq(self):
-        return self.mcu_freq
+            freq = self.mcu_freq
+        serial.set_clock_est(freq, self.reactor.monotonic(), 0)
+    # mcu clock querying
     def _status_event(self, eventtime):
-        self.queries_pending += 1
         self.serial.send(self.status_cmd)
         return eventtime + 1.0
     def _handle_status(self, params):
-        self.queries_pending = 0
+        # Extend clock to 64bit
+        clock32 = params['clock']
+        last_clock = self.last_clock
+        clock = (last_clock & ~0xffffffff) | clock32
+        if clock < last_clock:
+            clock += 0x100000000
+        self.last_clock = clock
+        # Check if this is the best round-trip-time seen so far
         sent_time = params['#sent_time']
         if not sent_time:
             return
         receive_time = params['#receive_time']
-        clock = params['clock']
-        with self.lock:
-            # Extend clock to 64bit
-            clock = (self.last_clock & ~0xffffffff) | clock
-            if clock < self.last_clock:
-                clock += 0x100000000
-            # Calculate expected send time from clock and previous estimates
-            clock_delta = clock - self.last_clock
-            min_send_time = (self.last_clock_time_min
-                             + clock_delta / self.max_freq)
-            max_send_time = self.last_clock_time + clock_delta / self.min_freq
-            # Calculate intersection of times
-            min_time = max(min_send_time, sent_time)
-            max_time = min(max_send_time, receive_time)
-            if min_time > max_time:
-                # No intersection - clock drift must be greater than expected
-                new_min_freq, new_max_freq = self.min_freq, self.max_freq
-                if min_send_time > receive_time:
-                    new_max_freq = (
-                        clock_delta / (receive_time - self.last_clock_time_min))
-                else:
-                    new_min_freq = (
-                        clock_delta / (sent_time - self.last_clock_time))
-                logging.warning(
-                    "High clock drift! Now %.0f:%.0f was %.0f:%.0f",
-                    new_min_freq, new_max_freq, self.min_freq, self.max_freq)
-                self.min_freq, self.max_freq = new_min_freq, new_max_freq
-                min_time, max_time = sent_time, receive_time
-            # Update variables
-            self.last_clock = clock
-            self.last_clock_time = max_time
-            self.last_clock_time_min = min_time
-            self.serial.set_clock_est(self.min_freq, max_time + 0.001, clock)
+        half_rtt = .5 * (receive_time - sent_time)
+        aged_rtt = (sent_time - self.min_half_rtt_time) * RTT_AGE
+        if half_rtt < self.min_half_rtt + aged_rtt:
+            self.min_half_rtt = half_rtt
+            self.min_half_rtt_time = sent_time
+            logging.debug("new minimum rtt=%.6f (%d)", half_rtt, self.mcu_freq)
+        # Calculate expected clock range from sent/receive time
+        est_min_clock = self.get_clock(sent_time + self.min_half_rtt)
+        est_max_clock = self.get_clock(receive_time - self.min_half_rtt)
+        if clock >= est_min_clock and clock <= est_max_clock:
+            # Sample inline with expectations
+            return
+        # Update estimated frequency based on latest sample
+        if clock > est_max_clock:
+            clock_fast = True
+            new_time = receive_time - self.min_half_rtt
+        else:
+            clock_fast = False
+            new_time = sent_time + self.min_half_rtt
+        if clock_fast != self.last_clock_fast:
+            self.prev_est = self.clock_est
+            self.last_clock_fast = clock_fast
+        new_freq = (self.prev_est[1] - clock) / (self.prev_est[0] - new_time)
+        self.serial.set_clock_est(new_freq, new_time + 0.001, clock)
+        self.clock_est = (new_time, clock, new_freq)
+    # clock frequency conversions
+    def print_time_to_clock(self, print_time):
+        return int(print_time * self.mcu_freq)
+    def clock_to_print_time(self, clock):
+        return clock / self.mcu_freq
+    def get_adjusted_freq(self):
+        return self.mcu_freq
+    # system time conversions
+    def get_clock(self, eventtime):
+        sample_time, clock, freq = self.clock_est
+        return int(clock + (eventtime - sample_time) * freq)
+    def estimated_print_time(self, eventtime):
+        return self.clock_to_print_time(self.get_clock(eventtime))
+    # misc commands
+    def clock32_to_clock64(self, clock32):
+        last_clock = self.last_clock
+        clock_diff = (last_clock - clock32) & 0xffffffff
+        if clock_diff & 0x80000000:
+            return last_clock + 0x100000000 - clock_diff
+        return last_clock - clock_diff
+    def is_active(self, eventtime):
+        print_time = self.estimated_print_time(eventtime)
+        last_clock_print_time = self.clock_to_print_time(self.last_clock)
+        return print_time < last_clock_print_time + COMM_TIMEOUT
+    def stats(self, eventtime):
+        sample_time, clock, freq = self.clock_est
+        return "freq=%d" % (freq,)
+    def calibrate_clock(self, print_time, eventtime):
+        return (0., self.mcu_freq)
 
-# Clock synching code for secondary MCUs (whose clocks are sync'ed to
-# a primary MCU)
+# Clock syncing code for secondary MCUs (whose clocks are sync'ed to a
+# primary MCU)
 class SecondarySync(ClockSync):
     def __init__(self, reactor, main_sync):
         ClockSync.__init__(self, reactor)
@@ -136,6 +135,7 @@ class SecondarySync(ClockSync):
     def connect_file(self, serial, pace=False):
         ClockSync.connect_file(self, serial, pace)
         self.clock_adj = (0., self.mcu_freq)
+    # clock frequency conversions
     def print_time_to_clock(self, print_time):
         adjusted_offset, adjusted_freq = self.clock_adj
         return int((print_time - adjusted_offset) * adjusted_freq)
@@ -145,25 +145,22 @@ class SecondarySync(ClockSync):
     def get_adjusted_freq(self):
         adjusted_offset, adjusted_freq = self.clock_adj
         return adjusted_freq
+    # misc commands
+    def stats(self, eventtime):
+        adjusted_offset, adjusted_freq = self.clock_adj
+        return "%s adj=%d" % (ClockSync.stats(self, eventtime), adjusted_freq)
     def calibrate_clock(self, print_time, eventtime):
-        #logging.debug("calibrate: %.3f: %.6f vs %.6f",
-        #              eventtime,
-        #              self.estimated_print_time(eventtime),
-        #              self.main_sync.estimated_print_time(eventtime))
-        with self.main_sync.lock:
-            ser_clock = self.main_sync.last_clock
-            ser_clock_time = self.main_sync.last_clock_time
-            ser_freq = self.main_sync.min_freq
+        ser_time, ser_clock, ser_freq = self.main_sync.clock_est
         main_mcu_freq = self.main_sync.mcu_freq
 
-        main_clock = (eventtime - ser_clock_time) * ser_freq + ser_clock
+        main_clock = (eventtime - ser_time) * ser_freq + ser_clock
         print_time = max(print_time, main_clock / main_mcu_freq)
-        main_sync_clock = (print_time + 2.) * main_mcu_freq
-        sync_time = ser_clock_time + (main_sync_clock - ser_clock) / ser_freq
+        main_sync_clock = (print_time + 4.) * main_mcu_freq
+        sync_time = ser_time + (main_sync_clock - ser_clock) / ser_freq
 
         print_clock = self.print_time_to_clock(print_time)
         sync_clock = self.get_clock(sync_time)
-        adjusted_freq = .5 * (sync_clock - print_clock)
+        adjusted_freq = .25 * (sync_clock - print_clock)
         adjusted_offset = print_time - print_clock / adjusted_freq
 
         self.clock_adj = (adjusted_offset, adjusted_freq)