# Support for reading acceleration data from an adxl345 chip
#
# Copyright (C) 2020-2021  Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging, time, collections, threading, multiprocessing, os
from . import bus, motion_report

# ADXL345 registers
REG_DEVID = 0x00
REG_BW_RATE = 0x2C
REG_POWER_CTL = 0x2D
REG_DATA_FORMAT = 0x31
REG_FIFO_CTL = 0x38
REG_MOD_READ = 0x80
REG_MOD_MULTI = 0x40

QUERY_RATES = {
    25: 0x8, 50: 0x9, 100: 0xa, 200: 0xb, 400: 0xc,
    800: 0xd, 1600: 0xe, 3200: 0xf,
}

ADXL345_DEV_ID = 0xe5
SET_FIFO_CTL = 0x90

FREEFALL_ACCEL = 9.80665 * 1000.
SCALE = 0.0039 * FREEFALL_ACCEL # 3.9mg/LSB * Earth gravity in mm/s**2

Accel_Measurement = collections.namedtuple(
    'Accel_Measurement', ('time', 'accel_x', 'accel_y', 'accel_z'))

# Helper class to obtain measurements
class ADXL345QueryHelper:
    def __init__(self, printer, cconn):
        self.printer = printer
        self.cconn = cconn
        print_time = printer.lookup_object('toolhead').get_last_move_time()
        self.request_start_time = self.request_end_time = print_time
        self.samples = []
    def finish_measurements(self):
        toolhead = self.printer.lookup_object('toolhead')
        self.request_end_time = toolhead.get_last_move_time()
        toolhead.wait_moves()
        self.cconn.finalize()
    def decode_samples(self):
        raw_samples = self.cconn.get_messages()
        if not raw_samples:
            return self.samples
        total = sum([len(m['params']['data']) for m in raw_samples])
        count = 0
        self.samples = samples = [None] * total
        for msg in raw_samples:
            for samp_time, x, y, z in msg['params']['data']:
                if samp_time < self.request_start_time:
                    continue
                if samp_time > self.request_end_time:
                    break
                samples[count] = Accel_Measurement(samp_time, x, y, z)
                count += 1
        del samples[count:]
        return self.samples
    def write_to_file(self, filename):
        def write_impl():
            try:
                # Try to re-nice writing process
                os.nice(20)
            except:
                pass
            f = open(filename, "w")
            f.write("#time,accel_x,accel_y,accel_z\n")
            samples = self.samples or self.decode_samples()
            for t, accel_x, accel_y, accel_z in samples:
                f.write("%.6f,%.6f,%.6f,%.6f\n" % (
                    t, accel_x, accel_y, accel_z))
            f.close()
        write_proc = multiprocessing.Process(target=write_impl)
        write_proc.daemon = True
        write_proc.start()

# Helper class for G-Code commands
class ADXLCommandHelper:
    def __init__(self, config, chip):
        self.printer = config.get_printer()
        self.chip = chip
        self.bg_client = None
        self.name = config.get_name().split()[-1]
        self.register_commands(self.name)
        if self.name == "adxl345":
            self.register_commands(None)
    def register_commands(self, name):
        # Register commands
        gcode = self.printer.lookup_object('gcode')
        gcode.register_mux_command("ACCELEROMETER_MEASURE", "CHIP", name,
                                   self.cmd_ACCELEROMETER_MEASURE,
                                   desc=self.cmd_ACCELEROMETER_MEASURE_help)
        gcode.register_mux_command("ACCELEROMETER_QUERY", "CHIP", name,
                                   self.cmd_ACCELEROMETER_QUERY,
                                   desc=self.cmd_ACCELEROMETER_QUERY_help)
        gcode.register_mux_command("ADXL345_DEBUG_READ", "CHIP", name,
                                   self.cmd_ADXL345_DEBUG_READ,
                                   desc=self.cmd_ADXL345_DEBUG_READ_help)
        gcode.register_mux_command("ADXL345_DEBUG_WRITE", "CHIP", name,
                                   self.cmd_ADXL345_DEBUG_WRITE,
                                   desc=self.cmd_ADXL345_DEBUG_WRITE_help)
    cmd_ACCELEROMETER_MEASURE_help = "Start/stop accelerometer"
    def cmd_ACCELEROMETER_MEASURE(self, gcmd):
        if not self.chip.is_measuring():
            # Start measurements
            self.bg_client = self.chip.start_internal_client()
            gcmd.respond_info("adxl345 measurements started")
            return
        if self.bg_client is None:
            raise gcmd.error("adxl345 measurements in progress")
        # End measurements
        name = gcmd.get("NAME", time.strftime("%Y%m%d_%H%M%S"))
        if not name.replace('-', '').replace('_', '').isalnum():
            raise gcmd.error("Invalid adxl345 NAME parameter")
        bg_client = self.bg_client
        self.bg_client = None
        bg_client.finish_measurements()
        # Write data to file
        if self.name == "adxl345":
            filename = "/tmp/adxl345-%s.csv" % (name,)
        else:
            filename = "/tmp/adxl345-%s-%s.csv" % (self.name, name,)
        bg_client.write_to_file(filename)
        gcmd.respond_info("Writing raw accelerometer data to %s file"
                          % (filename,))
    cmd_ACCELEROMETER_QUERY_help = "Query accelerometer for the current values"
    def cmd_ACCELEROMETER_QUERY(self, gcmd):
        if self.chip.is_measuring():
            raise gcmd.error("adxl345 measurements in progress")
        aclient = self.chip.start_internal_client()
        self.printer.lookup_object('toolhead').dwell(1.)
        aclient.finish_measurements()
        values = aclient.decode_samples()
        if not values:
            raise gcmd.error("No adxl345 measurements found")
        _, accel_x, accel_y, accel_z = values[-1]
        gcmd.respond_info("adxl345 values (x, y, z): %.6f, %.6f, %.6f"
                          % (accel_x, accel_y, accel_z))
    cmd_ADXL345_DEBUG_READ_help = "Query accelerometer register (for debugging)"
    def cmd_ADXL345_DEBUG_READ(self, gcmd):
        if self.chip.is_measuring():
            raise gcmd.error("adxl345 measurements in progress")
        reg = gcmd.get("REG", minval=29, maxval=57, parser=lambda x: int(x, 0))
        val = self.chip.read_reg(reg)
        gcmd.respond_info("ADXL345 REG[0x%x] = 0x%x" % (reg, val))
    cmd_ADXL345_DEBUG_WRITE_help = "Set accelerometer register (for debugging)"
    def cmd_ADXL345_DEBUG_WRITE(self, gcmd):
        if self.chip.is_measuring():
            raise gcmd.error("adxl345 measurements in progress")
        reg = gcmd.get("REG", minval=29, maxval=57, parser=lambda x: int(x, 0))
        val = gcmd.get("VAL", minval=0, maxval=255, parser=lambda x: int(x, 0))
        self.chip.set_reg(reg, val)

# Helper class for chip clock synchronization via linear regression
class ClockSyncRegression:
    def __init__(self, mcu, chip_clock_smooth, decay = 1. / 20.):
        self.mcu = mcu
        self.chip_clock_smooth = chip_clock_smooth
        self.decay = decay
        self.last_chip_clock = self.last_exp_mcu_clock = 0.
        self.mcu_clock_avg = self.mcu_clock_variance = 0.
        self.chip_clock_avg = self.chip_clock_covariance = 0.
    def reset(self, mcu_clock, chip_clock):
        self.mcu_clock_avg = self.last_mcu_clock = mcu_clock
        self.chip_clock_avg = chip_clock
        self.mcu_clock_variance = self.chip_clock_covariance = 0.
        self.last_chip_clock = self.last_exp_mcu_clock = 0.
    def update(self, mcu_clock, chip_clock):
        # Update linear regression
        decay = self.decay
        diff_mcu_clock = mcu_clock - self.mcu_clock_avg
        self.mcu_clock_avg += decay * diff_mcu_clock
        self.mcu_clock_variance = (1. - decay) * (
            self.mcu_clock_variance + diff_mcu_clock**2 * decay)
        diff_chip_clock = chip_clock - self.chip_clock_avg
        self.chip_clock_avg += decay * diff_chip_clock
        self.chip_clock_covariance = (1. - decay) * (
            self.chip_clock_covariance + diff_mcu_clock*diff_chip_clock*decay)
    def set_last_chip_clock(self, chip_clock):
        base_mcu, base_chip, inv_cfreq = self.get_clock_translation()
        self.last_chip_clock = chip_clock
        self.last_exp_mcu_clock = base_mcu + (chip_clock-base_chip) * inv_cfreq
    def get_clock_translation(self):
        inv_chip_freq = self.mcu_clock_variance / self.chip_clock_covariance
        if not self.last_chip_clock:
            return self.mcu_clock_avg, self.chip_clock_avg, inv_chip_freq
        # Find mcu clock associated with future chip_clock
        s_chip_clock = self.last_chip_clock + self.chip_clock_smooth
        scdiff = s_chip_clock - self.chip_clock_avg
        s_mcu_clock = self.mcu_clock_avg + scdiff * inv_chip_freq
        # Calculate frequency to converge at future point
        mdiff = s_mcu_clock - self.last_exp_mcu_clock
        s_inv_chip_freq = mdiff / self.chip_clock_smooth
        return self.last_exp_mcu_clock, self.last_chip_clock, s_inv_chip_freq
    def get_time_translation(self):
        base_mcu, base_chip, inv_cfreq = self.get_clock_translation()
        clock_to_print_time = self.mcu.clock_to_print_time
        base_time = clock_to_print_time(base_mcu)
        inv_freq = clock_to_print_time(base_mcu + inv_cfreq) - base_time
        return base_time, base_chip, inv_freq

MIN_MSG_TIME = 0.100

BYTES_PER_SAMPLE = 5
SAMPLES_PER_BLOCK = 10

# Printer class that controls ADXL345 chip
class ADXL345:
    def __init__(self, config):
        self.printer = config.get_printer()
        ADXLCommandHelper(config, self)
        self.query_rate = 0
        am = {'x': (0, SCALE), 'y': (1, SCALE), 'z': (2, SCALE),
              '-x': (0, -SCALE), '-y': (1, -SCALE), '-z': (2, -SCALE)}
        axes_map = config.getlist('axes_map', ('x','y','z'), count=3)
        if any([a not in am for a in axes_map]):
            raise config.error("Invalid adxl345 axes_map parameter")
        self.axes_map = [am[a.strip()] for a in axes_map]
        self.data_rate = config.getint('rate', 3200)
        if self.data_rate not in QUERY_RATES:
            raise config.error("Invalid rate parameter: %d" % (self.data_rate,))
        # Measurement storage (accessed from background thread)
        self.lock = threading.Lock()
        self.raw_samples = []
        # Setup mcu sensor_adxl345 bulk query code
        self.spi = bus.MCU_SPI_from_config(config, 3, default_speed=5000000)
        self.mcu = mcu = self.spi.get_mcu()
        self.oid = oid = mcu.create_oid()
        self.query_adxl345_cmd = self.query_adxl345_end_cmd = None
        self.query_adxl345_status_cmd = None
        mcu.add_config_cmd("config_adxl345 oid=%d spi_oid=%d"
                           % (oid, self.spi.get_oid()))
        mcu.add_config_cmd("query_adxl345 oid=%d clock=0 rest_ticks=0"
                           % (oid,), on_restart=True)
        mcu.register_config_callback(self._build_config)
        mcu.register_response(self._handle_adxl345_data, "adxl345_data", oid)
        # Clock tracking
        self.last_sequence = self.max_query_duration = 0
        self.last_limit_count = self.last_error_count = 0
        self.clock_sync = ClockSyncRegression(self.mcu, 640)
        # API server endpoints
        self.api_dump = motion_report.APIDumpHelper(
            self.printer, self._api_update, self._api_startstop, 0.100)
        self.name = config.get_name().split()[-1]
        wh = self.printer.lookup_object('webhooks')
        wh.register_mux_endpoint("adxl345/dump_adxl345", "sensor", self.name,
                                 self._handle_dump_adxl345)
    def _build_config(self):
        cmdqueue = self.spi.get_command_queue()
        self.query_adxl345_cmd = self.mcu.lookup_command(
            "query_adxl345 oid=%c clock=%u rest_ticks=%u", cq=cmdqueue)
        self.query_adxl345_end_cmd = self.mcu.lookup_query_command(
            "query_adxl345 oid=%c clock=%u rest_ticks=%u",
            "adxl345_status oid=%c clock=%u query_ticks=%u next_sequence=%hu"
            " buffered=%c fifo=%c limit_count=%hu", oid=self.oid, cq=cmdqueue)
        self.query_adxl345_status_cmd = self.mcu.lookup_query_command(
            "query_adxl345_status oid=%c",
            "adxl345_status oid=%c clock=%u query_ticks=%u next_sequence=%hu"
            " buffered=%c fifo=%c limit_count=%hu", oid=self.oid, cq=cmdqueue)
    def read_reg(self, reg):
        params = self.spi.spi_transfer([reg | REG_MOD_READ, 0x00])
        response = bytearray(params['response'])
        return response[1]
    def set_reg(self, reg, val, minclock=0):
        self.spi.spi_send([reg, val & 0xFF], minclock=minclock)
        stored_val = self.read_reg(reg)
        if stored_val != val:
            raise self.printer.command_error(
                    "Failed to set ADXL345 register [0x%x] to 0x%x: got 0x%x. "
                    "This is generally indicative of connection problems "
                    "(e.g. faulty wiring) or a faulty adxl345 chip." % (
                        reg, val, stored_val))
    # Measurement collection
    def is_measuring(self):
        return self.query_rate > 0
    def _handle_adxl345_data(self, params):
        with self.lock:
            self.raw_samples.append(params)
    def _extract_samples(self, raw_samples):
        # Load variables to optimize inner loop below
        (x_pos, x_scale), (y_pos, y_scale), (z_pos, z_scale) = self.axes_map
        last_sequence = self.last_sequence
        time_base, chip_base, inv_freq = self.clock_sync.get_time_translation()
        # Process every message in raw_samples
        count = seq = 0
        samples = [None] * (len(raw_samples) * SAMPLES_PER_BLOCK)
        for params in raw_samples:
            seq_diff = (last_sequence - params['sequence']) & 0xffff
            seq_diff -= (seq_diff & 0x8000) << 1
            seq = last_sequence - seq_diff
            d = bytearray(params['data'])
            msg_cdiff = seq * SAMPLES_PER_BLOCK - chip_base
            for i in range(len(d) // BYTES_PER_SAMPLE):
                d_xyz = d[i*BYTES_PER_SAMPLE:(i+1)*BYTES_PER_SAMPLE]
                xlow, ylow, zlow, xzhigh, yzhigh = d_xyz
                if yzhigh & 0x80:
                    self.last_error_count += 1
                    continue
                rx = (xlow | ((xzhigh & 0x1f) << 8)) - ((xzhigh & 0x10) << 9)
                ry = (ylow | ((yzhigh & 0x1f) << 8)) - ((yzhigh & 0x10) << 9)
                rz = ((zlow | ((xzhigh & 0xe0) << 3) | ((yzhigh & 0xe0) << 6))
                      - ((yzhigh & 0x40) << 7))
                raw_xyz = (rx, ry, rz)
                x = round(raw_xyz[x_pos] * x_scale, 6)
                y = round(raw_xyz[y_pos] * y_scale, 6)
                z = round(raw_xyz[z_pos] * z_scale, 6)
                ptime = round(time_base + (msg_cdiff + i) * inv_freq, 6)
                samples[count] = (ptime, x, y, z)
                count += 1
        self.clock_sync.set_last_chip_clock(seq * SAMPLES_PER_BLOCK + i)
        del samples[count:]
        return samples
    def _update_clock(self, minclock=0):
        # Query current state
        for retry in range(5):
            params = self.query_adxl345_status_cmd.send([self.oid],
                                                        minclock=minclock)
            fifo = params['fifo'] & 0x7f
            if fifo <= 32:
                break
        else:
            raise self.printer.command_error("Unable to query adxl345 fifo")
        mcu_clock = self.mcu.clock32_to_clock64(params['clock'])
        sequence = (self.last_sequence & ~0xffff) | params['next_sequence']
        if sequence < self.last_sequence:
            sequence += 0x10000
        self.last_sequence = sequence
        buffered = params['buffered']
        limit_count = (self.last_limit_count & ~0xffff) | params['limit_count']
        if limit_count < self.last_limit_count:
            limit_count += 0x10000
        self.last_limit_count = limit_count
        duration = params['query_ticks']
        if duration > self.max_query_duration:
            # Skip measurement as a high query time could skew clock tracking
            self.max_query_duration = max(2 * self.max_query_duration,
                                          self.mcu.seconds_to_clock(.000005))
            return
        self.max_query_duration = 2 * duration
        msg_count = (sequence * SAMPLES_PER_BLOCK
                     + buffered // BYTES_PER_SAMPLE + fifo)
        # The "chip clock" is the message counter plus .5 for average
        # inaccuracy of query responses and plus .5 for assumed offset
        # of adxl345 hw processing time.
        chip_clock = msg_count + 1
        self.clock_sync.update(mcu_clock + duration // 2, chip_clock)
    def _start_measurements(self):
        if self.is_measuring():
            return
        # In case of miswiring, testing ADXL345 device ID prevents treating
        # noise or wrong signal as a correctly initialized device
        dev_id = self.read_reg(REG_DEVID)
        if dev_id != ADXL345_DEV_ID:
            raise self.printer.command_error("Invalid adxl345 id (got %x vs %x)"
                                             % (dev_id, ADXL345_DEV_ID))
        # Setup chip in requested query rate
        self.set_reg(REG_POWER_CTL, 0x00)
        self.set_reg(REG_DATA_FORMAT, 0x0B)
        self.set_reg(REG_FIFO_CTL, 0x00)
        self.set_reg(REG_BW_RATE, QUERY_RATES[self.data_rate])
        self.set_reg(REG_FIFO_CTL, SET_FIFO_CTL)
        # Setup samples
        with self.lock:
            self.raw_samples = []
        # Start bulk reading
        systime = self.printer.get_reactor().monotonic()
        print_time = self.mcu.estimated_print_time(systime) + MIN_MSG_TIME
        reqclock = self.mcu.print_time_to_clock(print_time)
        rest_ticks = self.mcu.seconds_to_clock(4. / self.data_rate)
        self.query_rate = self.data_rate
        self.query_adxl345_cmd.send([self.oid, reqclock, rest_ticks],
                                    reqclock=reqclock)
        logging.info("ADXL345 starting '%s' measurements", self.name)
        # Initialize clock tracking
        self.last_sequence = 0
        self.last_limit_count = self.last_error_count = 0
        self.clock_sync.reset(reqclock, 0)
        self.max_query_duration = 1 << 31
        self._update_clock(minclock=reqclock)
        self.max_query_duration = 1 << 31
    def _finish_measurements(self):
        if not self.is_measuring():
            return
        # Halt bulk reading
        params = self.query_adxl345_end_cmd.send([self.oid, 0, 0])
        self.query_rate = 0
        with self.lock:
            self.raw_samples = []
        logging.info("ADXL345 finished '%s' measurements", self.name)
    # API interface
    def _api_update(self, eventtime):
        self._update_clock()
        with self.lock:
            raw_samples = self.raw_samples
            self.raw_samples = []
        if not raw_samples:
            return {}
        samples = self._extract_samples(raw_samples)
        if not samples:
            return {}
        return {'data': samples, 'errors': self.last_error_count,
                'overflows': self.last_limit_count}
    def _api_startstop(self, is_start):
        if is_start:
            self._start_measurements()
        else:
            self._finish_measurements()
    def _handle_dump_adxl345(self, web_request):
        self.api_dump.add_client(web_request)
        hdr = ('time', 'x_acceleration', 'y_acceleration', 'z_acceleration')
        web_request.send({'header': hdr})
    def start_internal_client(self):
        if self.is_measuring():
            raise self.printer.command_error(
                "ADXL345 measurement already in progress")
        cconn = self.api_dump.add_internal_client()
        return ADXL345QueryHelper(self.printer, cconn)

def load_config(config):
    return ADXL345(config)

def load_config_prefix(config):
    return ADXL345(config)